ELEC50001 EE2 Circuits and Systems

Problem Sheet 2

(Operation Amplifier Applications – Lectures 4 to 6)

- 1. Figure 1 shows the macro model of AP431i voltage reference in SPICE format.
 - (i) Sketch the part of the circuit involving R1, R2 and I1 only.
 - (ii) What is the meaning of the line for E1?
 - (iii) Figure 1b) is a partially completed full model circuit for AP431i. Complete the circuit by filling in the missing component.

- 2. Based on information provided in the datasheet of the MCP601 op-amp (see Problem sheet 1),
 - draw only the input stage of the macro model for this op-amp.
 - 3. Use the datasheet for MCP601 again, complete the missing component values in this model that specify: (i) the open-loop gain, (ii) the gain-bandwidth product, (iii) the slew-rate, (iv) output impedance, and (v) maximum output current, of this op-amp as shown in Figure Q3. (Input stage not shown here.)

Figure Q3

4. Derive an equation for the closed-loop gain G = Y/X for the circuit shown in Figure Q4 below assuming that the open-loop gain of the op-amp is A₁ and the feedback factor is K.

5. Figure Q5 shows two different analogue comparators with hysteresis (also known as Schmidt Trigger circuits) that compare the input voltage V_{IN} to some switching thresholds. Calculate the switching thresholds for each circuit in terms of V_{REF} , R_1 and R_2 .

6. For the circuit shown in Figure Q6, derive the transfer function $H(s) = V_{out}(s)/V_{in}(s)$.

7. *Figure Q7* shows a function generator that produces a square wave and a triangular wave. Calculate the amplitudes of and frequency of the signals.

- 8. Using the method described in Lecture 6 slide 11, design a Butterworth lowpass filter with a cutoff frequency of 5kHz and an attenuation rate of -80dB per decade.
- 9. Figure Q9 shows a 2nd order lowpass filter implemented using an op-amp configured as a unity gain amplifier. Assume that C1 = C2 = C and that R1 = R2 = R, derive the transfer function $H(s) = V_{out}(s)/V_{in}(s)$. If C = 100pF, determine the value of R such that the corner frequency is 10kHz. What is the Q of the filter?

10. The triangular signal from Q7 is connected the negative input of an op-amp and an analogue voltage Vin is applied to the positive input as shown in Figure Q10. Derive an equation relating the average voltage of V_{pwm} to V_{in} and the conditions under which this equation applies. Design a circuit to extract the average voltage from V_{pwm}.

