ELEC50001 EE2 Circuits and Systems

Problem Sheet 2

(Operation Amplifier Applications - Lectures 3-4)

1. Shown in Figure Q1a is an output circuit that drives a resistive load. If $\mathrm{V}_{\text {IN }}$ is a sinewave, plot the waveform for $V_{\text {out }}$. The output driver circuit is now modified to that shown in Figure Q1b. Explain how this circuit works and plot the waveform for $V_{\text {OUT }}$ for a sinusoidal input.

Figure Q1a

Figure Q1b
2. Figure $Q 2$ shows a class A amplifier circuit with $V c c=20 V . R_{c}$ is the load resistance. Assuming the current gain of the transistor Q is 25 , and that input voltage Vi produces a peak based current of 10 mA , calculate the input supply power, output power and efficiency of the amplifier.

Figure Q2
3. Figure $Q 3$ shows a push-pull amplifier circuit with $\mathrm{Vcc}=25 \mathrm{~V}$ and $\mathrm{Vss}=-25 \mathrm{~V}$. The input signal (sinewave) is 12 V rms, and the gain of the amplifier is 1 . Calculate the input power, output power, and power handled by each output transistor. Hence, calculate the circuit efficiency.

Figure Q2
4. Derive an equation for the closed-loop gain $G=Y / X$ for the circuit shown below assuming that the open-loop gain of the op-amp is A_{1} and the feedback factor is K .

Figure Q4
5. Figure Q5 shows two different analogue comparators with hysteresis (also known as Schmidt Trigger circuits) that compare the input voltage V_{IN} to some switching thresholds. Calculate the switching thresholds for each circuit in terms of $V_{\text {REF }}, R_{1}$ and R_{2}.

Figure Q5a

Figure Q5b
6. Figure $Q 6$ shows a function generator that produces a square wave and a triangular wave. Calculate the amplitudes of and frequency of the signals.

Figure Q6
7. Figure $Q 7$ shows Butterworth lowpass filter implemented using an op-amp. Derive an equation for the frequency response for this filter in terms of R1, R2, C1 and C2. Determine the value of R1 and R2, given that C 1 and C 2 are both 10 nF and the corner frequency is 10 kHz .

Figure Q7
8. The triangular signal from Q5 is connected the negative input of an op-amp and an analogue voltage Vin is applied to the positive input as shown in Figure Q8. Derive an equation relating to the average voltage of $\mathrm{V}_{\text {pwm }}$ to $\mathrm{V}_{\text {in }}$ and the conditions under which this equation applies. Design a circuit to extract the average voltage from $\mathrm{V}_{\mathrm{pwm}}$.

Figure Q8

